ПAmIBIA UПIVERSITY
 OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE: O7BSAM	LEVEL: 7
COURSE CODE: NUM701S	COURSE NAME: NUMERICAL METHODS 1
SESSION: \quad JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINERS	DrS. N. NEOSSI NGUETCHUE AND G. S. MBOKOMA
MODERATOR:	

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 decimals where necessary unless mentioned otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)
Attachments
None

Problem 1 [28 marks]
1-1. Write down the general formula of the Taylor's expansion with the Lagrange and the the integral remainder term respectively of a function $f(x)$ about a point $x=x_{0}$.

1-2. We want to generate the Taylor series of $f(x)=\sin (x)$ about $x_{0}=0$ in summation form.
1-2-1 Compute f^{\prime} and $f^{\prime \prime}$ and show by induction on $k \in \mathbb{N}$ that
[5]

$$
\begin{equation*}
f^{(2 k+1)}(x)=(-1)^{k} \cos (x) \tag{5}
\end{equation*}
$$

1-2-2 Deduce the expression of the Taylor series of $f(x)=\sin (x)$ about $x_{0}=0$.
1-3. Suppose that $g:[a, b] \rightarrow[a, b]$ is continuous on the real interval $[a, b]$ and is a contraction in the sense that there exists a constant $\lambda \in(0,1)$ such that

$$
|g(x)-g(y)| \leq \lambda|x-y|, \text { for all } x, y \in[a, b]
$$

Prove that there exists a unique fixed point in $[a, b]$ and that the fixed point iteration $x_{n+1}=$ $g\left(x_{n}\right)$ converges to it for any $x_{0} \in[a, b]$. Also, prove that the error is reduced by a factor of at least λ from each iteration to the next.

Problem 2. [45 marks]
2-1. Write down in details the formulae of the Lagrange and Newton's form of the polynomial that interpolates the set of data points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$.
$\mathbf{2 - 2}$. Use the results in 2-1. to determine the Lagrange and Newton's form of the polynomial that interpolates the set of data points $(1,1),(2,5)$ and $(3,15)$.
$\mathbf{2 - 3}$. Determine the error term for the formula

$$
f^{\prime \prime \prime}(x) \approx \frac{1}{2 h^{3}}[3 f(x+h)-10 f(x)+12 f(x-h)-6 f(x-2 h)+f(x-3 h)]
$$

2-4. State the central difference formula to approximate $f^{\prime \prime}\left(x_{0}\right)$ and use it to approximate $f^{\prime \prime}(0.5)$ when $f(x)=\ln (1+x)$ and $h=0.001$.

Problem 3. [27 marks]
The fourth-order Runge-Kutta (RK4) method to solve the IVP $y^{\prime}(t)=f(t, y), y\left(t_{0}\right)=y_{0}$ using n steps is described by the following algorithm
Given $f, t_{0}, y_{0}, t_{f}, n$, let $h=\left(t_{f}-t_{0}\right) / n$
For $k=0,1, \ldots, n-1$

$$
\begin{aligned}
& K 1=f\left(t_{k}, y_{k}\right) \\
& K 2=f\left(t_{k}+\frac{h}{2}, y_{k}+\frac{h}{2} K 1\right) \\
& K 3=f\left(t_{k}+\frac{h}{2}, y_{k}+\frac{h}{2} K 2\right) \\
& K 4=f\left(t_{k}+h, y_{k}+h K 3\right) \\
& y_{k+1}=y_{k}+(h / 6)[K 1+2 K 2+2 K 3+K 4] \\
& t_{k+1}=t_{k}+h
\end{aligned}
$$

End For
3-1. Write down the RK4 algorithm for the following specific problem after n steps

$$
y^{\prime}(t)=y-t^{2}+1, \quad y(0)=2
$$

3-2. In the kingdom of Bana, king Happi The First asked one of his subjects, a prominent mathematician to solve the above IVP using the fourth-order Runge-Kutta (RK4) method. He displayed the results in the form of the following table and purposely skipped some entries.

k	t_{k}	k_{1}	k_{2}	k_{3}	k_{4}	y_{k}
1	0.08	3.0	3.11840		3.24345	2.24969
2	0.16		3.36502		3.49368	
3		3.49351	3.61885			2.80885
4		3.75125		3.88567	4.01730	
5	0.4		4.15061		4.29200	

Compute only the missing values by the means of the given ones (don't re-compute them!!). [20]

